TOP PAGE
ENGLISH
JAPANESE
|
CONNECT WITH US:
Home
About
Services
Contact
Log in
*
Home
Press release
Jan 18, 2022 23:00 JST
Source:
Science and Technology of Advanced Materials
Tiny electric generators could accelerate wound healing
Researchers are working to overcome challenges in order to bring wearable, electric, wound-healing devices to clinical practice.
TSUKUBA, Japan, Jan 18, 2022 - (ACN Newswire) - Tiny dressings that generate electricity in response to movement could accelerate wound healing and tissue regeneration. Scientists in Taiwan reviewed the latest advances and potential applications of wound healing technology in the journal Science and Technology of Advanced Materials.
"Piezoelectric and triboelectric nanogenerators are excellent candidates for self-assisted wound healing due to their light weight, flexibility, elasticity and biocompatibility," says bioengineer Zong-Hong Lin of the National Tsing Hua University in Taiwan.
The natural wound healing process involves complex interactions between ions, cells, blood vessels, genes and the immune system; with every player triggered by a sequence of molecular events. An integral part of this process involves the generation of a weak electric field by the damaged epithelium - the layer of cells covering tissue. The electric field forms as a result of an ion gradient in the wound bed, which plays an important role in directing cell migration and promoting blood vessel formation in the area.
Scientists discovered in the mid- to late-1900s that stimulating tissue with an electric field could improve wound healing. Current research in this field is now focused on developing small, wearable, and inexpensive patches that aren't encumbered by external electrical equipment.
This has led to research on piezoelectric materials, including natural materials like crystals, silk, wood, bone, hair and rubber, and synthetic materials such as quartz analogs, ceramics and polymers. These materials generate an electric current when exposed to mechanical stress. Nanogenerators developed using the synthetic materials are especially promising.
For example, some research teams are exploring the use of self-powered piezoelectric nanogenerators made with zinc oxide nanorods on a polydimethylsiloxane matrix for accelerating wound healing. Zinc oxide has the advantage of being piezoelectric and biocompatible. Other scientists are using scaffolds made from polyurethane and polyvinylidene fluoride (PVDF) due to their high piezoelectricity, chemical stability, ease of manufacturing and biocompatibility. These and other piezoelectric nanogenerators have shown promising results in laboratory and animal studies.
Another type of device, called a triboelectric nanogenerator (TENG), produces an electric current when two interfacing materials come into and out of contact with each other. Scientists have experimented with TENGs that generate electricity from breathing movements, for example, to accelerate wound healing in rats. They have also loaded TENG patches with antibiotics to facilitate wound healing by also treating localized infection.
"Piezoelectric and triboelectric nanogenerators are excellent candidates for self-assisted wound healing due to their light weight, flexibility, elasticity and biocompatibility," says bioengineer Zong-Hong Lin of the National Tsing Hua University in Taiwan. "But there are still several bottlenecks to their clinical application."
For example, they still need to be customized so they are fit-for-size, as wound dimensions vary widely. They also need to be firmly attached without being negatively affected or corroded by the fluids that naturally exude from wounds.
"Our future aim is to develop cost-effective and highly efficient wound dressing systems for practical clinical applications," says Lin.
Further information
Zong-Hong Lin
National Tsing Hua University
Email:
linzh@mx.nthu.edu.tw
Research paper:
https://www.tandfonline.com/doi/full/10.1080/14686996.2021.2015249
About Science and Technology of Advanced Materials (STAM)
Open access journal STAM publishes outstanding research articles across all aspects of materials science, including functional and structural materials, theoretical analyses, and properties of materials.
https://www.tandfonline.com/STAM
Dr. Yoshikazu Shinohara
STAM Publishing Director
Email:
SHINOHARA.Yoshikazu@nims.go.jp
Press release distributed by Asia Research News for Science and Technology of Advanced Materials.
Source: Science and Technology of Advanced Materials
Sectors: Electronics, Materials & Nanotech, BioTech
Copyright ©2025 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
Related Press Release
Progress towards potassium-ion batteries
July 08 2025 06:48 JST
New method to blend functions for soft electronics
June 23 2025 00:15 JST
New Database of Materials Accelerates Electronics Innovation
May 05 2025 03:20 JST
High-brilliance radiation quickly finds the best composition for half-metal alloys
January 28 2025 08:00 JST
Machine learning used to optimise polymer production
December 03 2024 23:15 JST
Machine learning can predict the mechanical properties of polymers
October 25 2024 23:00 JST
Dual-action therapy shows promise against aggressive oral cancer
July 30 2024 20:00 JST
A new spin on materials analysis
April 17 2024 22:00 JST
Kirigami hydrogels rise from cellulose film
April 12 2024 18:00 JST
Sensing structure without touching
February 27 2024 08:00 JST
More Press release >>
Latest Press Release
Hitachi High-Tech Announces the SU9600: Next-Generation Ultrahigh-Resolution Scanning Electron Microscope with High Throughput
Nov 01, 2025 00:45 JST
Sharp to Introduce AQUOS sense10 Smartphone
Nov 01, 2025 00:27 JST
Fujitsu to provide digital ticketing service for NTT DOCOMO's new d ticket platform
Nov 01, 2025 00:07 JST
HTD1801, a First-in-Class Anti-inflammatory Metabolic Modulator, Demonstrates Durable 52-Week Efficacy and Safety in Two Phase III Trials in Type 2 Diabetes Mellitus
Oct 31, 2025 09:30 JST
MHI and Nippon Shokubai to Develop Ammonia Cracking System for NEDO's "Development of Technologies for Building a Competitive Hydrogen Supply Chain" Project
Oct 30, 2025 23:14 JST
NEC and e& Sign MoU to Drive Joint Sustainability Initiatives
Oct 30, 2025 22:46 JST
MHI Thermal Systems Launches Two New Models of Air-to-Water Heat Pumps Using Natural Refrigerant R290 for European Market
Oct 30, 2025 22:19 JST
Hitachi Energy and Blackstone Energy Transition Partners enter strategic partnership to create leading energy service provider in North America
Oct 30, 2025 21:40 JST
MHI-MS to Conduct Demonstration Testing of Vehicle Transport Robots at Nakagusuku Port in Okinawa
Oct 30, 2025 17:58 JST
DENSO Hosted a Press Briefing at JAPAN MOBILITY SHOW 2025
Oct 30, 2025 17:29 JST
Eisai and Merck & Co., Inc., Rahway, NJ, USA Provide Update on Phase 3 LEAP012 Trial in Unresectable, Non-Metastatic Hepatocellular Carcinoma
Oct 30, 2025 14:43 JST
Mazda Presents World Premiere of Two Vision Models at Japan Mobility Show 2025
Oct 30, 2025 14:33 JST
Mazda Rolls Out New Version of Brand Symbol from Japan Mobility Show 2025
Oct 30, 2025 14:26 JST
NEC and the Cambodian Mine Action Center Successfully Predict Landmine-Contaminated Areas in Cambodia Using AI
Oct 30, 2025 14:18 JST
Overview of Honda CEO Speech at the Japan Mobility Show 2025
Oct 30, 2025 14:00 JST
Honda Presents World Premiere of the Prototype of Honda 0 a, new SUV Model for Honda 0 Series at Japan Mobility Show 2025
Oct 30, 2025 11:55 JST
Honda Presents World Premiere of Super-ONE Prototype Compact EV at Japan Mobility Show 2025
Oct 30, 2025 11:50 JST
Mitsubishi Motors Debuts Mitsubishi Elevance Concept and Adventure-Inspiring Lineup at Japan Mobility Show 2025
Oct 30, 2025 11:39 JST
Fujitsu and PwC Japan partner on economic security measures for sovereign cloud solution
Oct 30, 2025 11:22 JST
Hitachi Rail becomes world's first transportation firm to adopt new NVIDIA IGX Thor solution for real-time AI
Oct 30, 2025 11:00 JST
More Latest Release >>