Aug 28, 2024 11:55 JST

Source: Fujitsu Ltd

Fujitsu and Osaka University accelerate progress toward practical quantum computing by significantly increasing computing scale through error impact reduction in quantum computing architecture
New technologies establish method to run practical quantum algorithms faster than current classical computers with fewer qubits

Kawasaki and Osaka, Aug 28, 2024 - (JCN Newswire) - Fujitsu Limited and the Center for Quantum Information and Quantum Biology at Osaka University (QIQB) today announced the joint development of two new technologies for the space-time efficient analog rotation quantum computing architecture (1) that will accelerate the realization of practical quantum computing.

Fujitsu and QIQB have leveraged these new technologies, one that improves phase angle accuracy during phase rotation (2) and one that automatically generates efficient qubit operation procedures, to show that it is theoretically possible for a quantum computer to perform a calculation that would take a classical computer five years, in only ten hours. The two organizations found that the calculation, a material energy estimate, would be possible using only 60,000 qubits, significantly less than the amount typically thought to be required (3) for fault-tolerant quantum computation (FTQC) (4) to surpass the calculation speed of classical computers.

These results demonstrate for the first time how quantum advantage, i.e., quantum computers being able to solve problems faster than current classical computers, can be achieved in the early-FTQC era (5), which is expected to arrive around 2030. Quantum computing is expected to accelerate technological innovations in various fields, including enabling a larger-scale analysis of the Hubbard model (6) for developing high temperature superconductors (7), which may improve the efficiency of electrical infrastructure, as well as lead to innovations in material development and drug discovery.

The generation of efficient qubit operation procedures was achieved through the development of a quantum circuit generator. This system introduces a streamlined the process for converting logic gates, which are the fundamental operations of quantum computing, into physical gates, which operate the qubits. The system is also equipped with acceleration technology that minimizes computing time by dynamically changing the operational procedures of the qubits.

The two organizations initially announced the quantum computing architecture on March 23, 2023 (8), but there were obstacles to practical applications including insufficient accuracy in phase rotation and the lack of an established physical gating procedure, a method of operating qubits suitable for specific calculation problems. These new technologies address these obstacles.

Through their continued joint quantum computing initiatives, Fujitsu and QIQB aim to contribute to solving societal issues, addressing decarbonization and reducing the cost of new material development.

Acknowledgements

This research was supported by the following grants: Japan Science and Technology Agency (JST); the Program on Open Innovation Platforms for Industry-academia Co-creation (COI-NEXT), "Quantum Software Research Hub" (JPMJPF2014); JST Moonshot Goal 6 "Realization of a fault-tolerant universal quantum computer that will revolutionize economy, industry, and security by 2050", R&D project "Research and Development of Theory and Software for Fault-tolerant Quantum Computers" (JPMJMS2061); and Japanese Ministry of Education, Culture, Sports, Science and Technology’s Quantum Leap Flagship Program (MEXT Q-LEAP) "Development of quantum software by intelligent quantum system design and its applications" (JPMXS0120319794).

[1] Space-time efficient analog rotation quantum computing architecture :A quantum computing architecture that can significantly reduce the number of physical qubits needed for arbitrary phase rotation, An essential step in achieving practical quantum computing.
[2] Phase rotation :An operation in which the arbitrary phase angle of a qubit rotates. An essential element in unlocking the true power of quantum computing.
[3] One million qubits :The estimated number of qubits required to solve the FeMoco (enzyme active center) energy estimation problem with an error rate of 0.1% (source cited: Reiher, et. al., PNAS, 114 (29) 7555-7560 (2017)).
[4] Fault-tolerant quantum computation (FTQC) :Fault-tolerant quantum computation achieved through the correction of quantum errors.
[5] Early-FTQC era :An era in which quantum computers work with only a maximum of 100,000 physical qubits and FTQC is considered to be impossible to achieve.
[6] Hubbard model :A theoretical model for calculating material properties. It is used to describe strongly correlated electron systems, including in high-temperature superconductivity.
[7] High temperature superconductor :A material that exhibits a phenomenon which causes it to have zero electrical resistance when it reaches a temperature above the boiling point of liquid nitrogen.
[8] Fujitsu and Osaka University develop new quantum computing architecture, accelerating progress toward practical application of quantum computer

About the Center for Quantum Information and Quantum Biology at Osaka University

The Center for Quantum Information and Quantum Biology consists of six research groups: Quantum Computing, Transdisciplinary Quantum Science, Quantum Information Devices, Quantum Communication and Security, Quantum Sensing, and Quantum Biology. QIQB promotes transdisciplinary research between each of these research groups and with other academic fields. The Center is an international research hub for quantum innovation by actively promoting international academic exchange and collaboration across borders. QIQB seeks to play a key role in nurturing future quantum leaders and specialists through education and training. For more information: https://qiqb.osaka-u.ac.jp/en/.

About Fujitsu

Fujitsu’s purpose is to make the world more sustainable by building trust in society through innovation. As the digital transformation partner of choice for customers in over 100 countries, our 124,000 employees work to resolve some of the greatest challenges facing humanity. Our range of services and solutions draw on five key technologies: Computing, Networks, AI, Data & Security, and Converging Technologies, which we bring together to deliver sustainability transformation. Fujitsu Limited (TSE:6702) reported consolidated revenues of 3.7 trillion yen (US$26 billion) for the fiscal year ended March 31, 2024 and remains the top digital services company in Japan by market share. Find out more: www.fujitsu.com.

About Osaka University

Osaka University was founded in 1931 as one of Japan’s imperial universities through strong demand from political and business circles in Osaka, as well as the people of Osaka City and Prefecture. The spiritual roots of Osaka University can be found in Kaitokudo and Tekijuku, educational institutions of the Edo period. After its merger with Osaka University of Foreign Studies in 2007, Osaka University became a comprehensive university with its own School of Foreign Studies. Boasting 11 undergraduate schools, 15 graduate schools, and 6 affiliated research institutes excelling in the fields of the humanities and social sciences, medicine, dentistry, pharmacy, science, and engineering, Osaka University is one of Japan’s premier comprehensive research universities.Osaka University will celebrate the 100th anniversary of its founding in 2031. We will contribute to the creation of a society where each member feels worth living through co-creation with diverse stakeholders to solve local and global challenges in accordance with the university's motto of “Live Locally, Grow Globally.”

Press Contacts

Fujitsu Limited
Public and Investor Relations Division
Inquiries

Center for Quantum Information and Quantum Biology at Osaka University
Quantum Software Research Hub
E-mail: coi-next@qiqb.osaka-u.ac.jp

Source: Fujitsu Ltd
Sectors: Cloud & Enterprise

Copyright ©2024 JCN Newswire. All rights reserved. A division of Japan Corporate News Network.

Related Press Release


Fujitsu leverages data to secure stable and efficient power supply for Kansai Transmission and Distribution
October 09 2024 10:00 JST
 
Fujitsu highlights technologies to realize its vision of AI as a trusted assistant at CEATEC 2024
October 04 2024 10:03 JST
 
Fujitsu and Supermicro announce strategic collaboration to develop green AI computing technology and liquid-cooled datacenter solutions
October 03 2024 08:38 JST
 
Fujitsu launches "Takane" - A large language model for enterprises offering the highest Japanese language proficiency in the world
September 30 2024 13:05 JST
 
Fujitsu and Stellar Science Foundation form partnership agreement to foster innovation by supporting young researchers
September 19 2024 09:31 JST
 
IHI, Fujitsu, and Mizuho Bank form agreement to launch joint business venture to provide total support scheme for J-Credit
September 18 2024 10:28 JST
 
Fujitsu and MoBagel revolutionize business processes through accelerated AI prediction
September 05 2024 09:40 JST
 
Fujitsu establishes Open All-Photonics Network Lab in Europe to promote global expansion of innovative network infrastructure
August 30 2024 17:15 JST
 
Fujitsu tackles 'drug loss' in Japan through ecosystem to accelerate digitalization of clinical trials
August 26 2024 11:19 JST
 
Fujitsu SX Survey 2024: The latest trends in global CxO's AI and sustainability initiatives
August 02 2024 10:01 JST
 
More Press release >>

Latest Press Release


More Latest Release >>