ENGLISH
|
JAPANESE
|
CONNECT WITH US:
Home
About
Contact
Log in
Home
Press release
Jan 18, 2022 23:00 JST
Source:
Science and Technology of Advanced Materials
Tiny electric generators could accelerate wound healing
Researchers are working to overcome challenges in order to bring wearable, electric, wound-healing devices to clinical practice.
TSUKUBA, Japan, Jan 18, 2022 - (ACN Newswire) - Tiny dressings that generate electricity in response to movement could accelerate wound healing and tissue regeneration. Scientists in Taiwan reviewed the latest advances and potential applications of wound healing technology in the journal Science and Technology of Advanced Materials.
"Piezoelectric and triboelectric nanogenerators are excellent candidates for self-assisted wound healing due to their light weight, flexibility, elasticity and biocompatibility," says bioengineer Zong-Hong Lin of the National Tsing Hua University in Taiwan.
The natural wound healing process involves complex interactions between ions, cells, blood vessels, genes and the immune system; with every player triggered by a sequence of molecular events. An integral part of this process involves the generation of a weak electric field by the damaged epithelium - the layer of cells covering tissue. The electric field forms as a result of an ion gradient in the wound bed, which plays an important role in directing cell migration and promoting blood vessel formation in the area.
Scientists discovered in the mid- to late-1900s that stimulating tissue with an electric field could improve wound healing. Current research in this field is now focused on developing small, wearable, and inexpensive patches that aren't encumbered by external electrical equipment.
This has led to research on piezoelectric materials, including natural materials like crystals, silk, wood, bone, hair and rubber, and synthetic materials such as quartz analogs, ceramics and polymers. These materials generate an electric current when exposed to mechanical stress. Nanogenerators developed using the synthetic materials are especially promising.
For example, some research teams are exploring the use of self-powered piezoelectric nanogenerators made with zinc oxide nanorods on a polydimethylsiloxane matrix for accelerating wound healing. Zinc oxide has the advantage of being piezoelectric and biocompatible. Other scientists are using scaffolds made from polyurethane and polyvinylidene fluoride (PVDF) due to their high piezoelectricity, chemical stability, ease of manufacturing and biocompatibility. These and other piezoelectric nanogenerators have shown promising results in laboratory and animal studies.
Another type of device, called a triboelectric nanogenerator (TENG), produces an electric current when two interfacing materials come into and out of contact with each other. Scientists have experimented with TENGs that generate electricity from breathing movements, for example, to accelerate wound healing in rats. They have also loaded TENG patches with antibiotics to facilitate wound healing by also treating localized infection.
"Piezoelectric and triboelectric nanogenerators are excellent candidates for self-assisted wound healing due to their light weight, flexibility, elasticity and biocompatibility," says bioengineer Zong-Hong Lin of the National Tsing Hua University in Taiwan. "But there are still several bottlenecks to their clinical application."
For example, they still need to be customized so they are fit-for-size, as wound dimensions vary widely. They also need to be firmly attached without being negatively affected or corroded by the fluids that naturally exude from wounds.
"Our future aim is to develop cost-effective and highly efficient wound dressing systems for practical clinical applications," says Lin.
Further information
Zong-Hong Lin
National Tsing Hua University
Email:
linzh@mx.nthu.edu.tw
Research paper:
https://www.tandfonline.com/doi/full/10.1080/14686996.2021.2015249
About Science and Technology of Advanced Materials (STAM)
Open access journal STAM publishes outstanding research articles across all aspects of materials science, including functional and structural materials, theoretical analyses, and properties of materials.
https://www.tandfonline.com/STAM
Dr. Yoshikazu Shinohara
STAM Publishing Director
Email:
SHINOHARA.Yoshikazu@nims.go.jp
Press release distributed by Asia Research News for Science and Technology of Advanced Materials.
Source: Science and Technology of Advanced Materials
Sectors: Electronics, Science & Nanotech, BioTech
Copyright ©2024 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
Latest Release
Hitachi: Established the Open Source Program Office (OSPO) to Globally Lead the Strategic Utilization of OSS
Nov 11, 2024 10:31 JST
Transgene and NEC Present New Data Confirming Clinical Proof of Principle for Neoantigen Cancer Vaccine, TG4050, in Head & Neck Cancer at SITC 2024
Nov 08, 2024 10:31 JST
Hitachi High-Tech and University of Tokyo Promote Joint Research for the Practical Application of High-resolution Laser-PEEM in the Semiconductor Field
Nov 07, 2024 18:19 JST
Mitsubishi Motors Acquires Its Own Shares from Nissan
Nov 07, 2024 17:20 JST
Honda Signs Sponsorship Agreement to Provide Electrified Vehicles at World Athletics Championships Tokyo 25
Nov 07, 2024 17:10 JST
Home of Fujitsu joint conservation project designated as first Nationally Certified Sustainably Managed Natural Site in Okinawa
Nov 07, 2024 14:51 JST
NEC and NEC Bio publish foundational work on T Cell Receptor engineering using proprietary generative AI at the Society for Immunotherapy of Cancer annual meeting
Nov 07, 2024 11:40 JST
Anime Tokyo Station 1st Anniversary Event: Celebrating one year since the opening of the new hub for sharing Japanese anime
Nov 07, 2024 11:00 JST
57% of Banking Executives Struggle with Data Silos, Blocking AI-Driven Personalization, CleverTap's New Report Highlights
Nov 06, 2024 15:30 JST
Honda Unveils Electric Motorcycle Concept Models "EV Fun Concept" and "EV Urban Concept" at EICMA 2024
Nov 06, 2024 14:15 JST
Yoshimoto Kogyo and Mitsubishi Corporation have signed a business partnership agreement for co-creation of business using "laughter"
Nov 06, 2024 11:51 JST
Honda to Begin European Verification Test of Battery Sharing Service with GoCimo
Nov 06, 2024 10:39 JST
Honda Unveils World's First and New V3 Engine with Electrical- Compressor at EICMA 2024
Nov 06, 2024 09:03 JST
Victory and world title for TOYOTA GAZOO Racing
Nov 05, 2024 17:59 JST
Tokyo Stock Exchange and Fujitsu announce renewal of cash equity trading system 'arrowhead4.0'
Nov 05, 2024 17:13 JST
Mitsubishi Heavy Industries Continues Order Intake, Revenue, and Profit Growth in Strong First Half, Raises Full-Year Order Intake Guidance
Nov 05, 2024 14:37 JST
Eisai's Corporate Venture Capital Subsidiary, Eisai Innovation, Inc., Selected for AMED's 'Strengthening Program for Pharmaceutical Startup Ecosystem"
Nov 05, 2024 11:35 JST
Asahi Kasei and Honda Sign Shareholders' Agreement to Convert Existing Asahi Kasei Subsidiary into Joint Venture for Production of Lithium-ion Battery Separators in Canada
Nov 04, 2024 14:12 JST
Joby Aviation and Toyota Accelerate Efforts to Realize Air Mobility
Nov 04, 2024 09:36 JST
Eisai Completes Rolling Submission to US FDA for LEQEMBI(R) (lecanemab-irmb) Biologics License Application for Subcutaneous Maintenance Dosing for the Treatment of Early Alzheimer's Disease Under the Fast Track Status
Nov 01, 2024 13:56 JST
More Latest Release >>
Related Release
Machine learning can predict the mechanical properties of polymers
October 25 2024 23:00 JST
Dual-action therapy shows promise against aggressive oral cancer
July 30 2024 20:00 JST
A new spin on materials analysis
April 17 2024 22:00 JST
Kirigami hydrogels rise from cellulose film
April 12 2024 18:00 JST
Sensing structure without touching
February 27 2024 08:00 JST
Nano-sized probes reveal how cellular structure responds to pressure
November 21 2023 07:00 JST
Machine learning techniques improve X-ray materials analysis
November 17 2023 10:00 JST
A bio-inspired twist on robotic handling
November 14 2023 20:00 JST
GPT-4 artificial intelligence shows some competence in chemistry
October 17 2023 08:00 JST
Closing the loop between artificial intelligence and robotic experiments
August 24 2023 09:00 JST
More Press release >>