ENGLISH
|
JAPANESE
|
CONNECT WITH US:
Home
About
Contact
Log in
Home
Press release
May 24, 2023 10:00 JST
Source:
Science and Technology of Advanced Materials
Machine intelligence for designing molecules and reaction pathways
Two key challenges in chemistry innovation are solved simultaneously by exploring chemical opportunities with artificial intelligence.
TSUKUBA, Japan, May 24, 2023 - (ACN Newswire) - Researchers in Japan have developed a machine learning process that simultaneously designs new molecules and suggests the chemical reactions to make them. The team, at the Institute of Statistical Mathematics (ISM) in Tokyo, published their results in the journal Science and Technology of Advanced Materials: Methods.
Designing the network of bonds linking atoms into molecules and suggesting chemical routes
to make the molecules can now be done simultaneously.
Many research groups are making significant progress in using artificial intelligence (AI) and machine learning methods to design feasible molecular structures with desired properties, but progress in putting the design concepts into practice has been slow. The greatest impediment has been the technical difficulties in finding chemical reactions that can make the designed molecules with efficiencies and costs that could be practicable for real-world uses.
"Our novel machine learning algorithm and associated software system can design molecules with any desired properties and suggest synthetic routes for making them from an extensive list of commercially available compounds," says statistical mathematician Ryo Yoshida, leader of the research group.
The process uses a statistical approach called Bayesian inference which works with a vast set of data about different options for starting materials and reaction pathways. The possible starting materials are all combinations of the millions of compounds that can be readily purchased. The computer algorithm assesses the huge range of feasible reactions and reaction networks to discover a synthetic route towards a compound with the properties it has been instructed to aim for. Expert chemists can then review the results to test and refine what the AI proposes. AI makes the suggestions while humans decide which is best.
"In a case study for designing drug-like molecules, the method showed overwhelming performance," says Yoshida. It also designed routes towards industrially useful lubricant molecules.
"We hope that our work will accelerate the process of data-driven discovery of a wide range of new materials," Yoshida concludes. In support of this aim, the ISM team has made the software implementing their machine learning system available to all researchers on the GitHub website.
The current success focused only on the design of small molecules. The team now plan to investigate adapting the procedure to design polymers. Many of the most important industrial and biological compounds are polymers, but it has proved difficult to make new versions proposed by machine learning due to challenges in finding reactions to build the designs. The simultaneous design and reaction discovery options offered by this new technology might break through that barrier.
Further information
Ryo Yoshida
The Institute of Statistical Mathematics
Email:
yoshidar@ism.ac.jp
Paper:
https://doi.org/10.1080/27660400.2023.2204994
About Science and Technology of Advanced Materials: Methods (STAM-M)
STAM Methods is an open access sister journal of Science and Technology of Advanced Materials (STAM), and focuses on emergent methods and tools for improving and/or accelerating materials developments, such as methodology, apparatus, instrumentation, modeling, high-through put data collection, materials/process informatics, databases, and programming.
https://www.tandfonline.com/STAM-M
Dr Yasufumi Nakamichi
STAM Publishing Director
Email:
NAKAMICHI.Yasufumi@nims.go.jp
Press release distributed by Asia Research News for Science and Technology of Advanced Materials.
Source: Science and Technology of Advanced Materials
Sectors: Science & Nanotech
Copyright ©2024 ACN Newswire. All rights reserved. A division of Asia Corporate News Network.
Latest Release
Honda Announces CUV e: and ICON e: Electric Personal Commuters in Indonesia
Oct 09, 2024 17:46 JST
Mitsubishi Power Completes Landmark 5,300MW Combined Cycle Power Plant Project in Thailand
Oct 09, 2024 17:16 JST
Honda Introduces Next-generation Technologies for Honda 0 Series Models at Honda 0 Tech Meeting 2024
Oct 09, 2024 17:03 JST
Toyota to Exhibit at Japan Mobility Show Bizweek 2024
Oct 09, 2024 14:48 JST
Fujitsu leverages data to secure stable and efficient power supply for Kansai Transmission and Distribution
Oct 09, 2024 11:00 JST
"Urece Tablets" (Dotinurad) Approved In Thailand For Gout And Hyperuricemia
Oct 08, 2024 14:00 JST
JCB and Nuvei expand global partnership in APAC
Oct 08, 2024 12:00 JST
JCB to offer Google Pay(TM) in Japan
Oct 07, 2024 11:00 JST
Fujitsu highlights technologies to realize its vision of AI as a trusted assistant at CEATEC 2024
Oct 04, 2024 11:03 JST
Toyota to Invest $500 Million in Joby Aviation
Oct 03, 2024 15:59 JST
Fujitsu and Supermicro announce strategic collaboration to develop green AI computing technology and liquid-cooled datacenter solutions
Oct 03, 2024 09:38 JST
Eisai Commences Business Activities At New Pharma Sales Subsidiary In Saudi Arabia
Oct 02, 2024 11:28 JST
IOWN All-Photonics Network with Optical Fiber Sensing Functions Achieves Wide-Area Traffic Flow Monitoring
Oct 01, 2024 17:44 JST
Release of Mazda Integrated Report 2024
Oct 01, 2024 10:56 JST
DENSO and ROHM Agree to Start Consideration of Strategic Partnership in the Semiconductor Field
Oct 01, 2024 09:27 JST
Olympus Launches VISERA S, a New Imaging Platform
Sep 30, 2024 15:00 JST
Fujitsu launches "Takane" - A large language model for enterprises offering the highest Japanese language proficiency in the world
Sep 30, 2024 14:05 JST
DENSO Announces Changes of Executive Responsibility and Executive Officers
Sep 30, 2024 13:22 JST
Mitsubishi Corporation: JOGMEC Commissioned Feasibility Study for Overseas CCS Value Chain
Sep 30, 2024 11:38 JST
Mazda Production and Sales Results for August 2024
Sep 27, 2024 17:20 JST
More Latest Release >>
Related Release
Dual-action therapy shows promise against aggressive oral cancer
July 30 2024 20:00 JST
A new spin on materials analysis
April 17 2024 22:00 JST
Kirigami hydrogels rise from cellulose film
April 12 2024 18:00 JST
Sensing structure without touching
February 27 2024 08:00 JST
Nano-sized probes reveal how cellular structure responds to pressure
November 21 2023 07:00 JST
Machine learning techniques improve X-ray materials analysis
November 17 2023 10:00 JST
A bio-inspired twist on robotic handling
November 14 2023 20:00 JST
GPT-4 artificial intelligence shows some competence in chemistry
October 17 2023 08:00 JST
Closing the loop between artificial intelligence and robotic experiments
August 24 2023 09:00 JST
Face-down: Gravity's effects on cell movement
May 13 2023 00:00 JST
More Press release >>