ENGLISH
|
JAPANESE
|
CONNECT WITH US:
Home
About
Contact
Log in
*
Home
Press release
2022年01月18日 23時00分
Tiny electric generators could accelerate wound healing
Researchers are working to overcome challenges in order to bring wearable, electric, wound-healing devices to clinical practice.
TSUKUBA, Japan, 2022年01月18日 - (JCN Newswire) - Tiny dressings that generate electricity in response to movement could accelerate wound healing and tissue regeneration. Scientists in Taiwan reviewed the latest advances and potential applications of wound healing technology in the journal Science and Technology of Advanced Materials.
The natural wound healing process involves complex interactions between ions, cells, blood vessels, genes and the immune system; with every player triggered by a sequence of molecular events. An integral part of this process involves the generation of a weak electric field by the damaged epithelium - the layer of cells covering tissue. The electric field forms as a result of an ion gradient in the wound bed, which plays an important role in directing cell migration and promoting blood vessel formation in the area.
Scientists discovered in the mid- to late-1900s that stimulating tissue with an electric field could improve wound healing. Current research in this field is now focused on developing small, wearable, and inexpensive patches that aren't encumbered by external electrical equipment.
This has led to research on piezoelectric materials, including natural materials like crystals, silk, wood, bone, hair and rubber, and synthetic materials such as quartz analogs, ceramics and polymers. These materials generate an electric current when exposed to mechanical stress. Nanogenerators developed using the synthetic materials are especially promising.
For example, some research teams are exploring the use of self-powered piezoelectric nanogenerators made with zinc oxide nanorods on a polydimethylsiloxane matrix for accelerating wound healing. Zinc oxide has the advantage of being piezoelectric and biocompatible. Other scientists are using scaffolds made from polyurethane and polyvinylidene fluoride (PVDF) due to their high piezoelectricity, chemical stability, ease of manufacturing and biocompatibility. These and other piezoelectric nanogenerators have shown promising results in laboratory and animal studies.
Another type of device, called a triboelectric nanogenerator (TENG), produces an electric current when two interfacing materials come into and out of contact with each other. Scientists have experimented with TENGs that generate electricity from breathing movements, for example, to accelerate wound healing in rats. They have also loaded TENG patches with antibiotics to facilitate wound healing by also treating localized infection.
"Piezoelectric and triboelectric nanogenerators are excellent candidates for self-assisted wound healing due to their light weight, flexibility, elasticity and biocompatibility," says bioengineer Zong-Hong Lin of the National Tsing Hua University in Taiwan. "But there are still several bottlenecks to their clinical application."
For example, they still need to be customized so they are fit-for-size, as wound dimensions vary widely. They also need to be firmly attached without being negatively affected or corroded by the fluids that naturally exude from wounds.
"Our future aim is to develop cost-effective and highly efficient wound dressing systems for practical clinical applications," says Lin.
Further information
Zong-Hong Lin
National Tsing Hua University
Email:
linzh@mx.nthu.edu.tw
Research paper:
https://www.tandfonline.com/doi/full/10.1080/14686996.2021.2015249
About Science and Technology of Advanced Materials (STAM)
Open access journal STAM publishes outstanding research articles across all aspects of materials science, including functional and structural materials, theoretical analyses, and properties of materials.
https://www.tandfonline.com/STAM
Dr. Yoshikazu Shinohara
STAM Publishing Director
Email:
SHINOHARA.Yoshikazu@nims.go.jp
Press release distributed by Asia Research News for Science and Technology of Advanced Materials.
Copyright ©2025 JCN Newswire. All rights reserved. A division of Japan Corporate News Network.
Latest Release
Honda Technical Support for Red Bull Powertrains in F1 Racing Concludes
Dec 08, 2025 16:34 JST
MHIET U.S. Subsidiary's Franklin Plant Celebrates 10th Anniversary
Dec 08, 2025 16:03 JST
Lexus World Premieres Lexus LFA Concept BEV Sports Car
Dec 05, 2025 19:13 JST
TOYOTA GAZOO Racing World Premieres GR GT & GR GT3
Dec 05, 2025 18:58 JST
TOYOTA GAZOO Racing and Lexus Hold World Premiere of GR GT, GR GT3, and Lexus LFA Concept
Dec 05, 2025 18:24 JST
World's First General Design Approval (GDA) for Developed Steel and Post-Weld Heat Treatment (PWHT) Exemption based on ECA for Low-pressure Liquefied CO2 Tank made of KF460 steel
Dec 05, 2025 18:17 JST
Hitachi at CES 2026: Building a Harmonized Society Through Technology
Dec 04, 2025 19:40 JST
Fujitsu and Scaleway partner to accelerate European sustainable transformation and data sovereignty with FUJITSU-MONAKA CPU-based AI inference
Dec 04, 2025 19:08 JST
NEC Orchestrating Future Fund Invests in PopID, Inc. to Accelerate Global Expansion of Biometric Payment Solutions and Launch a Strategic Collaboration
Dec 04, 2025 18:52 JST
Eisai Presents New Data on the Continued and Expanding Benefit of LEQEMBI(R) (lecanemab-irmb) Maintenance Treatment in Early Alzheimer's Disease at CTAD 2025
Dec 04, 2025 18:36 JST
The 26th Hong Kong Forum marks successful completion
Dec 03, 2025 22:44 JST
New Data Presented at CTAD 2025 Confirms Pharmacological Effect of LEQEMBI(R) (lecanemab-irmb) on Neurotoxic Aβ Protofibrils in CSF
Dec 03, 2025 18:19 JST
Mitsubishi Motors Launches the All-New Destinator in Vietnam
Dec 03, 2025 18:00 JST
Anime Tokyo Station: Celebrating the 25th Anniversaries of Two Popular Anime with an Anniversary Joint Exhibition Starting November 15
Dec 03, 2025 11:30 JST
Eisai Presents New Data on Anti-Tau Antibody Etalanetug (E2814) at CTAD 2025
Dec 03, 2025 00:01 JST
NEC Launches AI Agent Service in Japan to Automate Procurement Negotiations Using AI
Dec 02, 2025 23:43 JST
Fujitsu develops new technology to support human-robot collaboration
Dec 02, 2025 23:26 JST
Fujitsu establishes international consortium to tackle disinformation/misinformation and new AI risks
Dec 02, 2025 22:55 JST
Fujitsu achieves high-precision, long-duration molecular dynamics simulation for all-solid-state battery interphases with over 100,000 atoms
Dec 01, 2025 23:04 JST
Fujitsu develops multi-AI agent collaboration technology to optimize supply chains, launches joint trials
Dec 01, 2025 22:43 JST
More Latest Release >>